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We theoretically study the coherent nonlinear response of electrons confined in semiconductor quantum
wells under the effect of an electromagnetic radiation close to resonance with an intersubband transition. Our
approach is based on the time-dependent Schrödinger-Poisson equation stemming from a Hartree description of
Coulomb-interacting electrons. This equation is solved by standard numerical tools and the results are interpreted
in terms of approximated analytical formulas. For growing intensity, we observe a redshift of the effective
resonance frequency due to the reduction of the electric dipole moment and the corresponding suppression
of the depolarization shift. The competition between coherent nonlinearities and incoherent saturation effects is
discussed. The strength of the resulting optical nonlinearity is estimated across different frequency ranges from
mid-IR to THz with an eye to ongoing experiments on Bose-Einstein condensation of intersubband polaritons
and to the speculative exploration of quantum optical phenomena such as single-photon emission in the mid-IR
and THz windows.
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I. INTRODUCTION

Intersubband (ISB) transitions in semiconductor quantum
wells (QWs) play a crucial role in a number of optoelectronic
devices across a wide range of wavelengths, from the visible
down to the IR and the THz ranges [1]. A most celebrated
example is the quantum cascade laser, which is one of the
most widespread semiconductor-based sources of coherent ra-
diation for the mid-IR and THz ranges of the electromagnetic
spectrum [2]. Nonlinear optical effects in these wavelength
regions are also attracting great interest, in particular, for what
concerns the realization of passively mode-locked pulsed laser
sources [3,4] and optical combs [5,6] as well as switching,
modulation, and harmonic generation when combined with
metasurfaces [7–9].

Many among these developments are based on incoherent
optical nonlinearities which result from a saturation mech-
anism due to the shelving of electrons into optically dark
states and the consequent reduction of the effective oscillator
strength of the transition [10–13]. Since they stem from an
incoherent dynamics and have a relatively slow timescale
determined by the decay rate of the dark excitations, these
nonlinearities can hardly result into coherent processes. On
the other hand, coherent nonlinearities associated to ultra-
fast processes like Rabi oscillations of a two-level transition
has been widely studied under strong pulsed illuminations
[14–16]. The goal of this paper is to contribute to building
a general theoretical picture of the nonlinear response of ISB
transitions encompassing the two regimes.

*iacopo.carusotto@unitn.it

The simplest theoretical description of the nonlinear op-
tical response of electrons in QWs is based on master
equations that only include a few discrete electronic states
[9,16,17]. While this is accurate in the low electronic density
limit, at higher densities Coulomb interactions start playing
a significant role deforming and mixing the single-electron
states. At the level of linear response to weak beams, they
are responsible for the depolarization shift of the ISB transi-
tion [18–21]. For growing light intensities, many intriguing
phenomena have been anticipated [17], in particular, the
saturation of the optical transition was predicted to give a
corresponding reduction of the depolarization shift and, thus,
a sizable frequency shift of the transition [22]. Effects of this
kind have been experimentally investigated under quasi-cw
illuminations [12] and theoretically analyzed for the case of
pulsed illuminations [23].

While existing approaches are sufficient to obtain accu-
rate predictions for the effective nonlinear optical response
in many specific configurations, the objective of this paper
is to develop a theory that is able to quantitatively capture
the coherent dynamics of electrons in generic configurations
and include the subtle interplay between nonlinear effects
and Coulomb interactions. Taking inspiration from earlier
works [22,23], we make use of a mean-field description of
the electron dynamics based on a Hartree approximation of
Coulomb interactions. This approach yields a time-dependent
Schrödinger-Poisson (SP) equation for the quantum electronic
wave function in a potential that self-consistently includes
the Coulomb interaction as a nonlocal nonlinear interaction
term. Here, as a key advance, we numerically solve the time-
dependent SP equation to obtain predictions for the nonlinear
optical response of the electronic system for arbitrary levels
of excitation strength and electronic density.
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The structure of the paper is the following. In Sec. II,
we introduce the physical system under investigation and we
present our theoretical framework based on the SP equation.
This formalism is first applied in Sec. III to the calculation
of the linear optical response under weak illumination, re-
covering, among other things, the depolarization shift of the
ISB transition due to Coulomb interactions at high electronic
densities.

In Sec. IV, we move on to study the nonlinear optical
response to stronger excitations. In particular, we point out a
marked intensity dependence of the ISB resonance and of the
effective dipole moment. The numerical results are interpreted
in terms of a nonlinear quenching of the oscillator strength
and the consequent suppression of the depolarization shift.
Analytical scaling laws connecting the nonlinear response in
different wavelength regions from the mid-IR to the THz are
then extracted from the numerics. A critical discussion of the
relation between the coherent nonlinearities and competing
incoherent nonlinearities due to the shelving of electrons in
dark states is finally provided.

In Sec. V, we investigate the consequences of these non-
linearities for a stack of doped QWs embedded in an optical
cavity and operating in the strong light-matter coupling
regime. Besides the direct redshift due to the suppressed de-
polarization shift, in the microcavity case a sizable shift of
the polariton branches also occurs from the reduction of the
oscillator strength at high intensities. While these two effects
are in competition on the lower polariton branch, they add
up constructively to reinforce the upper polariton nonlinear-
ity. These predictions are of great importance in the context
of ISB polariton physics with potential applications to ISB
polariton condensation and lasing [24,25]. As a final, more
speculative topic, in Sec. VI we discuss the promise of ISB
nonlinearities in view of translating to the mid- and far-IR
domains those polariton blockade effects that were originally
predicted for interband exciton-polaritons in the near-infrared
and visible range [26–28]. Conclusions and perspectives are
finally drawn in Sec. VII.

II. THE MODEL AND THE STATIC PROPERTIES

We consider electrons in QW systems that are translation-
ally invariant along the xy plane perpendicular to the growth
axis z. All electrons are assumed to be initially located in the
lowest subband of the QW and share the same wave function
ψ (z) along the growth axis z. The total antisymmetry condi-
tion of the (fermionic) electronic wave function is ensured by
the electronic motion along the xy plane, all electronic states
of the lowest subband being filled up to a given Fermi energy.
Future work will deal with the extension of our formalism to
the multisubband case [20,21,29] where the electron density
is so large that the Fermi energy exceeds the ISB transition
energy and the coupled evolution of several wave functions
corresponding to the different subbands has to be simultane-
ously determined.

At the level of the Hartree description of Coulomb interac-
tions, we neglect quantum correlations among electrons and
we assume that each electron is subject to the electrostatic po-
tential generated by the average electron density. This picture
can be formalized in a time-dependent nonlocal nonlinear SP

equation,

ih̄
∂ψ (z, t )

∂t
= − h̄2

2m∗
∂2ψ

∂z2
+ VQW(z)ψ (z)

+ 2π e2

ε

∫
dz′ |z − z′| [σimp(z′)

− σel|ψ (z′)|2] ψ (z) − e E (t ) z ψ (z), (1)

for the single-particle electron wave function ψ (z), normal-
ized to

∫
dz |ψ (z)|2 = 1.

VQW(z) is the effective confining potential of the QW
and, for simplicity, we have assumed a parabolic electronic
band with a z-independent effective mass m∗ at all points.
Generalization to a nonparabolic and/or space-dependent
mass case can be carried out with straightforward
modifications. e is the electron charge and ε is the background
dielectric constant. Furthermore, σimp(z) is the z-dependent
three-dimensional density of the dopant impurities and the
three-dimensional electronic density is given by σel |ψ (z)|2 in
terms of the overall surface electron density σel . The global
neutrality is ensured by

∫
dz σimp(z) = σel. The nonlocality

of the nonlinear interaction term stems from the long-range
nature of the Coulomb potential between electrons which, in
the present planar geometry, is proportional to the distance
|z − z′|. In the limit of a vanishing electronic density, the
nonlinear interaction term vanishes and the evolution of
the single-particle wave function ψ reduces to a linear
Schrödinger equation. Finally, the last term accounts for the
time-dependent electric field E (t ) of the electromagnetic
wave that excites the electrons.

The first step of our calculation consists of determining
the static distribution of charges in the ground state of the
system. Because of the Coulomb interaction, the ground-state
wave function is in fact distorted from the lowest eigenstate
of the QW potential VQW(z) and can be obtained as the self-
consistent minimum energy eigenstate ψg(z) of the nonlinear
SP equation:

Eg ψg(z) = − h̄2

2m∗
∂2ψg

∂z2
+ VQW(z)ψg(z) + 2π e2

ε

×
∫

dz′ |z − z′| [σimp(z′) − σel|ψg(z′)|2] ψg(z) .

(2)

To numerically solve this eigenvalue equation for ψg(z) and
the single-particle energy Eg in specific configurations, an
imaginary-time evolution technique has been adopted. This
is a standard numerical technique used to determine the
ground state of interacting many-body systems at the level of
mean-field approximation, for instance, dilute Bose-Einstein
condensates of ultracold atoms [30]. A brief account of
the principles of this numerical method can be found in
Appendix A.

Examples of such calculations are illustrated in Fig. 1.
The convergence of the energy to the ground-state energy is
illustrated in Fig. 1(a) for two different values of the electron
density (solid and dashed lines). Snapshots of the electronic
wave function approaching the ground state are shown as
blue lines in the insets of this panel. Here, the black lines
display the total potential Vtot (z) felt by electrons, equal to the
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FIG. 1. (a) Example of imaginary-time SP evolution of the en-
ergy starting from a simply guessed wave function (a Gaussian
centered on the well) and converging toward the ground state. The
insets show the spatial profile of the total potential including the
QW and Coulomb interaction potentials (black lines) and the squared
modulus of the electronic wave function (blue lines) at different
imaginary times. The top inset refers to an early imaginary time indi-
cated by the arrow, well before the convergence of the algorithm. The
bottom inset refers instead to a late imaginary time after convergence.
Within each panel, the solid/dashed lines refer to different values of
the electron density, respectively, negligible (solid) and substantial
(dashed). (b) Results of the calculation for two different locations
of the impurities, as indicated by the red arrows. The black solid
line shows the total potential experienced by the electrons. The blue
lines show the squared modulus of several single-particle eigenstates
for an electron density of 3 × 1012 cm−2. Each wave function is
shifted upward by an amount corresponding to its eigenenergy. In
all calculations within this paper, we take values ε = 12.9 for the
background dielectric constant and m∗ = 0.067mel for the effective
mass of electrons.

sum of the QW potential VQW(z) and the Coulomb interaction
potential.

Plots of the final wave function are shown in Fig. 1(b)
for the same QW thickness and total electron density σel =
3 × 1012 cm−2 but different spatial distributions of the dopant
impurities, either symmetrically located outside the well
(modulation doping, left panel) or inside in the well (right
panel), indicated by the red arrows. As before, the solid black
lines display the total potential Vtot (z) felt by electrons, while
the blue lines show the squared modulus |ψi(z)|2 of the dif-
ferent eigenstates in the total potential, corresponding to the
different subbands. The baseline of each wave function is ver-
tically shifted by the energy of each electronic eigenstate. For
the sake of simplicity, throughout this paper, we will always
assume that the electron population is initially concentrated in
the lowest subband.

III. LINEAR DYNAMICS

The energy differences between the single-particle energy
levels shown in Fig. 1(b) give a qualitative indication of
the transition energies, but an accurate determination of the
collective mode frequencies requires the use of the full SP
Eq. (1) since the electronic motion unavoidably leads to a
time-dependent modification of the Coulomb potential. In the
literature on ISB transitions, this frequency shift goes by the
name of depolarization shift [18–21].

An exact prediction for the collective oscillation frequen-
cies in the linear regime of weak excitations could be obtained
by linearizing the SP Eq. (1) around the ground state ψg

determined in the previous section. This gives the linearized
equation of motion

ih̄
∂ δψ (z, t )

∂t
= − h̄2

2m∗
∂2δψ (z)

∂z2
+ VQW(z) δψ (z)

+ 2π e2

ε

∫
dz′ |z − z′| {[σimp(z′)

− σel|ψg(z′)|2] δψ (z) − σel[δψ
∗(z′) ψg(z′)

+ ψ∗
g (z′) δψ (z′)}]ψg(z) (3)

for the perturbation δψ (z) defined as ψ (z) = e−iEgt/h̄[ψg(z) +
δψ (z, t )]. Differently from the Bogoliubov equations for
atomic gases with contact interactions [31,32], here the lin-
earized equation features a nonlocal Coulomb interaction
term.

An analytical solution for the eigenmodes of Eq. (3) can be
obtained only in suitable limits as discussed in Appendix B.
In the general case, it typically requires numerical methods
to diagonalize the linear problem [33]. For this reason, in
this paper we adopt an equivalent yet fully numeric strategy
that has the key advantage of being directly extended to the
nonlinear regime. As sketched in Fig. 2(a), the idea is to
simulate the real-time evolution starting from the ground-state
wave function ψg(z) obtained by the imaginary-time evolution
discussed in the previous section and look at the small os-
cillations induced by a suitably chosen weak electromagnetic
pulse E (t ).

The carrier frequency of the pulse is chosen to be in the
vicinity of the transition frequency of interest. The pulse dura-
tion is chosen to be long enough in time not to excite multiple
excitation modes but also short enough to give a sufficiently
wide bandwidth that easily covers the desired transition. As a
rule of thumb, Gaussian pulses with a duration in the several
10 fs range are typically a good choice to efficiently excite
ISB transitions in the mid-IR without having to fine-tune the
carrier frequency. The overall pulse strength is chosen to be
weak enough to be well in the linear regime and avoid (for
the moment) all nonlinear effects.

We then record the temporal evolution of the system at later
times in response to the perturbation. As a key observable,
we calculate the time dependence of the average electronic
polarization:

z(t ) =
∫

dz z |ψ (z, t )|2 . (4)

115431-3



R. COMINOTTI et al. PHYSICAL REVIEW B 107, 115431 (2023)

FIG. 2. (a) Example of the time dependence of the electric field
amplitude of the incident pulse (red) and of the induced electronic
polarization (green). The insets show the total potential Vtot (z) (black)
and the squared modulus of the electronic wave function (blue and
orange) at two different times, indicated by the stars in the main
graph. (b) Numerically evaluated ISB transition frequency in the
linear regime of weak excitations as a function of the electron density
(solid and dashed lines) compared with the prediction E21 of the
static Hartree approximation (squares) discussed in the text and in
Appendix B. The bare transition frequency Eo

21 is indicated by the
horizontal black dotted line. The dopant impurities are located either
outside the well (modulation doping, dashed line, and open symbols)
or inside the well (solid line and filled symbols).

An example of the temporal profile of the applied electric
field pulse is shown as a red line in Fig. 2 together with the
resulting time dependence of z(t ) (blue curve). From the latter,
the transition frequency ωres and the oscillation amplitude z̄
are straightforwardly obtained by means of a sinusoidal fit of
the form [34]

z(t ) � z̄ cos(ωrest + ϕ) . (5)

Note that the fact that in our calculation the oscillations per-
sist for indefinitely long times is a consequence of having
neglected all the electronic decoherence processes [35] that
would lead to a decay of the dipole moment at a characteristic
rate γISB typically on the order of a fraction of ps. Inclusion
of decoherence processes into our SP formalism will be the
subject of future work.

The result of a few such calculations for realistic QW
parameters is shown in Fig. 2(b), where the oscillation fre-
quency ωres in response to a very weak perturbation in the
linear regime is plotted as a function of the electron density
for dopant impurities located outside the well (modulation
doping) or inside the well. For small electron densities, the
Coulomb interactions have a negligible effect and the oscilla-
tion frequency recovers the energy separation Eo

21 of the two
lowest eigenstates of the linear Schrödinger equation in the
bare potential VQW(z) of the well.

The significant blueshift of the oscillation frequency that is
observed for growing electron densities is a result of Coulomb
interactions. Here, the importance of the depolarization shift
[18–21] is easily appreciated comparing the numerically ob-
tained oscillation frequency (solid and dashed lines) with the
static Hartree prediction given by the energy difference E21

between the two lowest energy single-particle orbitals in the
total static potential Vtot including interactions (square sym-
bols) [36]. Additional analytical insight on the physical origin
of this frequency difference is presented in Appendix B.

IV. NONLINEAR DYNAMICS

In the previous section, we have introduced our theoreti-
cal framework and we have given a first confirmation of its
efficiency by numerically recovering the well-known depolar-
ization shift of the oscillation frequency in the weak excitation
regime. In the present section, we move on to the study of
nonlinear effects. Among the many nonlinear effects that ISB
may feature in different configurations, in this paper we focus
on the shifts of the oscillation frequency that appear under
stronger excitations and on the related drop of the oscillator
strength. The numerical results will be interpreted in terms
of simple analytical relations and scaling laws that allow us
to quickly bridge different regimes and wavelength ranges.
The experimental consequences of our results will finally be
discussed in comparison with competing incoherent effects.

A. Numerical results

Nonlinear effects start being visible for larger values of
the applied electric field amplitude. As done in the previous
section for the linear regime, the oscillation frequency ωres and
the oscillation amplitude z̄ are extracted from the sinusoidal
fit of the time-dependent dipole z(t ) at late times. Once again,
provided the excitation pulse spectrum is narrow enough to
only excite the desired ISB transition, we have verified that the
extracted value of ωres and z̄ do not depend on the details of
the excitation pulse but only on the energy that gets deposited
in the QW as expected on physical grounds.

As a crucial step to unravel the different mechanisms un-
derlying the nonlinear effects, we need to isolate the intrinsic
nonlinear dependence of the oscillation frequency on the ex-
citation level from the nontrivial dynamics of the excitation
process during the electric field pulse. As pointed out in Ref.
[23], the amount of energy that gets effectively delivered to the
electrons may in fact be strongly affected by nonlinear effects
that push the transition frequency on or off resonance during
the pulse itself.
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To suppress these effects, we classify our numerically ex-
tracted value of the oscillation frequency as a function of
the additional energy (per electron) �E that is deposited in
the electronic motion at the end of the excitation sequence.
Once the pulse has gone, energy is conserved, so �E can be
estimated by numerically calculating the increase in the SP
energy,

ESP =
∫

dz

[
h̄2

2m∗

∣∣∣∣∂ψ

∂z

∣∣∣∣
2

+ VQW(z) |ψ (z)|2
]

+ π e2

ε

∫
dz dz′ |z − z′| [σimp(z′)

− σel|ψ (z′)|2] |ψ (z)|2, (6)

between the wave function ψ at a generic late-time tlate and the
one at the initial time t = 0, �E = ESP(tlate ) − ESP(t = 0).
An intuitive understanding of the physical meaning of the
�E parameter can be obtained by relating it to experimen-
tally accessible quantities. For sufficiently weak Coulomb
interactions, we can neglect nonlinearities and approximately
write �E = p2 Eo

21, where p1,2 are the fractional occupations
of the ground and excited subband, p1 + p2 = 1. The point
�E = Eo

21/2 then corresponds to the saturation condition
p2 = p1 = 1/2. Whereas these arguments are exact in the
low-density limit, they remain qualitatively valid also in the
presence of sizable nonlinearities as long as Coulomb energy
is a relatively small correction to the bare transition energy
Eo

21. Additional remarks on the relation between �E and the
incident intensity in a microcavity geometry will be given at
the beginning of Sec. V.

1. Nonlinear shift of the oscillation frequency

Figure 3 shows the oscillation frequency ωres as a func-
tion of the deposited energy �E for two different spatial
distributions of the dopant impurities, namely, outside (top) or
inside (bottom) the well: as expected from the approximated
calculations in Ref. [22], the oscillation frequency h̄ωres shows
an approximately linear redshift for growing �E .

For a given geometry, we note from this figure that the
different lines corresponding to different values of the elec-
tron density σel approximately cross at a single point on
the h̄ωres = Eo

21 horizontal line. Together with the linear de-
pendence of the linear-regime depolarization shift on σel

discussed above, this points toward an approximated analyt-
ical form

h̄ωres

Eo
21

� 1 + a0 e2LQWσel

ε Eo
21

− a1 e2LQWσel

ε Eo
21

�E

Eo
21

(7)

for the resonance frequency, where the adimensional a0,1

parameters only depend on the well geometry and not on
the electron density. It is interesting to note how the second
term in Eq. (7) has a similar functional form as the standard
expression for the depolarization shift

h̄ωres

Eo
21

=
√

Eo
21

2 + (h̄ωpl)2

Eo
21

� 1 + h̄2ω2
pl

2Eo
21

2 (8)

where ωpl = [4πe2σel/(m∗εLQW)]1/2 is the plasma frequency
of QW electrons and the a0 coefficient in Eq. (7) is related

FIG. 3. Oscillation frequency h̄ωres as a function of the deposited
energy per electron �E . Different curves refer to growing values
of the electron density, from a very small σel ∼ 0 cm−2 value (red
triangles) to higher ones σel = 1 × 1012 cm−2 (green diamonds), 2 ×
1012 cm−2 (yellow pentagons), and 3 × 1012 cm−2 (blue dots). The
two (a), (b) panels refer to different location of the dopant impurities
outside (a) and inside (b) the QW. Solid lines are guides to the eyes
based on a linear regression of the numerical data points. Within each
panel, the inset shows (black line) the total potential Vtot (z) in the
ground state and (blue lines) the squared modulus of several single-
particle eigenstates in the total potential for the highest value of the
electronic density considered in the main panels. Each wave function
is shifted upward by an amount corresponding to its eigenenergy.
For the chosen QW parameters, the bare ISB transition is in the
mid-IR range at an energy around 110 meV. The vertical dashed lines
indicate the position of the saturation point �E = Eo

21/2.

to the adimensional geometrical parameter h̄2/(m∗L2
QWEo

21) of
order one.

For the configurations of Fig. 3, the a0,1 parameters are
approximated by a0 ∼ 0.35 and a1 ∼ 1.5 for the top panel
and by a0 ∼ 0.6 and a1 ∼ 1.3 for the bottom one. As dis-
cussed in detail in Appendix B, the smaller value of the
weak-excitation frequency shift parameter a0 in the upper
panel is mostly the effect of the static Coulomb interactions
with the doping impurities, which are more significant when
the latter are located outside the well and counterbalance the
effect of the dynamical distortion of the electronic distribution
induced by the excitation. On the other hand, the slope a1

of the excitation-dependent shift has comparable values in
the two cases as it mostly depends on depolarization shift
effects. Quite interestingly, for the experimentally realistic
values of the electron density considered in the figure, the
nonlinear red shift can be comparable to the typical linewidths
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FIG. 4. Normalized squared amplitude of the oscillating electric
dipole z̄ as a function of the deposited energy �E for the same
configurations shown in Fig. 3. The vertical dashed lines indicate
the position of the saturation point �E = Eo

21/2.

of ISB transitions (around a few meV’s) already for deposited
energies well below saturation of the two-level ISB transition,
that is, �E � Eo

21/2 � 55 meV (vertical dashed line in the
figure). As we are going to see in Sec. IV C, this statement
may need revisiting if a sizable fraction of the electrons gets
accumulated in the QW as incoherent dark excitations.

2. Oscillation amplitude

Similar plots for the amplitude z̄ of the electron oscillations
as a function of the excitation energy are shown in Fig. 4
for the same well geometries and electron densities as in
the previous figure. Physically, z̄ corresponds to the effective
electric dipole moment of the transition, a quantity closely
related to its oscillator strength.

The general features of this plot are easily understood
in the case of a negligible electron density (red triangles).
In this case, one recovers the usual behavior of two-level
atoms. The squared dipole moment z̄2 grows linearly for small
excitation energies �E , then saturates to a maximum value
for �E = Eo

21/2 = 55 meV, where the population is equally
distributed between the two levels, and finally decreases again
in the population-inversion regime.

Except for an overall reduction of the dipole moment due to
the modification of the electronic wave functions by Coulomb
interactions, a qualitatively very similar behavior is found for
higher electron densities σel, with a linear growth of z̄2 at small
�E and a saturation at larger �E . For all geometries and all
values of the electron density considered, our simulations con-
firm the physical expectation that the transition gets saturated
when approximately half of the electronic population is in the
excited states of the well.

This behavior can be summarized in an approximated ana-
lytical form(

z̄

LQW

)2

� b2
0

[
1 − b1

�E

Eo
21

] [
1 − s1

e2σelLQW

εEo
21

]
�E

Eo
21

, (9)

where the adimensional b0,1 and s1 coefficients only depend
on the well geometry. In all considered cases, from the data
displayed in Fig. 4 one can extract a value b1 ∼ 1 for the
coefficient in the nonlinear dipole moment reduction factor,
which gives a factor of 1/2 suppression of the squared dipole
moment when �E/Eo

21 � 1/2 and electrons are equally (yet
coherently) distributed between the two subbands. This is in
stark contrast with the case of incoherent nonlinearities, where
an equal population of the two states leads to a full quenching
of the dipole moment [10–13].

B. Scaling laws

The coefficients in the analytical forms Eqs. (7) and (9)
have an interesting interpretation in terms of scaling laws. For
the purpose of this discussion, let us restrict for simplicity
to QWs of thickness LQW with infinitely high barriers. As
compared to the more realistic configuration considered in the
figures, having infinite barriers only introduces quantitatively
minor differences.

If lengths are measured in units of the well thickness
ζ = z/LQW and, correspondingly, time in units of the inverse
kinetic energy τ = h̄t/(mL2

QW), the SP equation can be recast
in an adimensional form

i
∂ψ̃

∂τ
= − 1

2

∂2ψ̃

∂ζ 2
+ Ṽ (ζ ) ψ̃ − Ẽ (τ ) ζ ψ̃

+ ηCoul

∫
dζ |ζ − ζ ′| [σ̃imp(ζ ′) − σel |ψ̃ (ζ ′)|2] ,

(10)

where the renormalized wave function ψ̃ = L1/2
QWψ is normal-

ized such that
∫

dζ |ψ̃ (ζ )|2 = 1, the renormalized impurity
density is σ̃imp = σimpLQW, and the electric field is Ẽ =
eEmL3

QW/h̄2. The function Ṽ (ζ ) describes the infinite barriers
and is defined as V = 0 for |ζ | < 1/2 and +∞ otherwise. The
relative strength of the Coulomb interactions is quantified by
the coefficient ηCoul = 2πe2mL3

QWσel/h̄2ε on the second line.
The universality of this form provides simple scaling laws

under which the coefficients in Eqs. (7) and (9) are invariant.
This provides a straightforward way to extend our analytical
results to all frequency ranges without the need of repeating
the numerical calculation. Specifically, let us consider that
the QW width is varied by a factor α−1/2 so the resonance
frequency Eo

21 is multiplied by α. Under this change, the
Coulomb interaction parameter ηCoul (i.e., the relative value
of the depolarization shift) stays constant if the electron den-
sity is varied by a factor of α3/2. For instance, reducing the
resonance frequency by a factor of 10 from 110 meV (in the
mid-IR) to 11 meV (corresponding to ∼2.7 THz) requires a
∼3 times wider well; keeping the same ηCoul then requires a
∼30 times lower two-dimensional electron density. In the next
section, we will see how this scaling impacts the value of light
intensity that is needed to observe nonlinear effects.

C. Competing incoherent nonlinearities

Our theoretical developments so far provide a simple yet
realistic model of those coherent optical nonlinearities that
stem from the intrinsic nonlinearity of the electronic motion
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and the Coulomb interactions. As such, our results directly
provide an estimate of the magnitude of coherent nonlinear
processes, for instance, the nonlinear frequency shift of the
ISB resonance or, equivalently, the strength of the parametric
coupling in wave-mixing processes.

It is, however, crucial to keep in mind that other nonlinear
processes of an incoherent nature are also typically at play for
ISB transitions in QWs. Electrons in QWs are in fact subject
to different decoherence mechanisms that lead to a fast effec-
tive decay of the ISB excitations into relatively long-lived dark
electronic excitations [35]. This results in a sizable reduction
in the density of active electrons participating in the electronic
transition and thus in a quenching of the oscillator strength
and, as pointed out in early works [22], of the depolarization
shift.

Leaving aside the shift of the transition frequency due
to the static Coulomb interactions with the dark excitations
(which is typically small in simple wells but may become siz-
able in strongly asymmetric configurations [17]), the coherent
optical response can still be captured by our theory provided
we identify at each time the electron density with the one of
active electrons, σel → σ act

el , and we estimate the evolution of
σ act

el in time using a simple rate-equation model,

σ̇ act
el = γd

(
σel − σ act

el

) − γISBσ act
el

�E

Eo
21

, (11)

where γISB is the decay rate of the coherent ISB excitations
(of density approximately given by σ act

el �E/Eo
21 � p2σ

act
el )

and γd is the (typically much slower) decay rate of the dark
excitations. Estimates for the latter are typically in the 10
ps range, much longer than the characteristic decay of the
coherent ISB excitation on the order of a fraction of ps.

At the steady state under a monochromatic excitation, the
fraction of active electrons is reduced to

σ act
el

σel
= 1

1 + �E
Eo

21

γISB

γd

. (12)

Since in typical samples γd � γISB, the reduction in the den-
sity of active electrons can be important already at small
excitation levels �E/Eo

21 � 1. This suggests that in quasi-cw
illumination regimes, the nonlinear shift of the resonances
receives a dominant contribution from incoherent saturation
effects. If one is interested in incoherent nonlinear processes
such as bleaching and/or a frequency shift of the ISB tran-
sition, the long relaxation time γd is a beneficial feature to
reduce the required incident power [37].

In spite of the presence of incoherent effects, the coherent
nonlinearities that underlie wave-mixing effects remain how-
ever active and display an interestingly different scaling with
σel : given the form of the last, nonlinear term of Eq. (7), the
excitation level �E/Eo

21 needed to obtain a given value of
the (coherent) nonlinear shift decreases as σ−1

el for growing
electron density σel for fixed QW geometry. Via Eq. (12), this
implies that the incoherent saturation effect can be reduced
by increasing the electron density σel. Furthermore, under the
experimentally reasonable assumption that γd does not change
much when moving from the mid-IR toward the THz range,
this same equation suggests that the relative effect of the
incoherent nonlinearities is reduced for longer wavelengths.

Finally, it is important to note that all these arguments
hold a continuous-wave illumination of the sample by, e.g.,
a quantum cascade laser source [38]. A promising alternative
to further suppress the incoherent effects is to use a pulsed
excitation. In this regime, the experiment can be carried out on
a fast enough timescale that the interesting coherent nonlinear
dynamics occurs before a sizable amount of dark excitations
is generated [39].

V. OPTICAL NONLINEARITIES IN MICROCAVITIES

One of the most promising configurations to exploit the
optical nonlinearities discussed in the previous section to ob-
serve useful optical processes is to embed the QWs within
high-Q microcavity devices to enter the so-called strong
light-matter coupling regime. In this regime, the elementary
excitation modes have the mixed light-matter character of
polaritons, which allows for an efficient coupling of the elec-
tronic degrees of freedom to the optical fields and therefore
enhances the effect of the nonlinearities. Building a complete
theory of the nonlinear dynamics of such microcavity devices
is a task that goes far beyond this paper for which preliminary
steps have been reported in Refs. [25,37,39]. As such, the goal
of this section is to obtain a quantitative estimate of the actual
strength of the ISB nonlinearities in a configuration that is
most promising for applications.

As a specific benchmark quantity, we will consider the
light intensity value that is needed to have a frequency shift
of the polariton mode comparable to the linewidth. This is
the typical condition under which important nonlinear effects
such as optical bistability [40] or optical parametric oscillation
start occurring [25]. The discussion that follows will mostly
concentrate on the latter effect, which is a promising strategy
to achieve lasing and Bose-Einstein condensation effects in
unique wavelength regions [24,41]. Since the amplitude of the
parametric coupling between the pump and the signal/idler
modes is quantitatively related to the frequency shift, it is
natural to characterize the parametric oscillation threshold in
terms of the ratio between the frequency shift and the decay
rate.

Even though our theory is fully general and can be applied
to generic devices, for the sake of concreteness we keep in
mind the specific example of double-metal microcavities, a
most promising workhorse for studies of ISB polaritons in
both the THz and mid-IR frequency ranges [42]. In these
devices, the QWs are sandwiched between two metallic lay-
ers. The back metallic layer is left unpatterned and acts as a
perfectly reflecting plane, while the front one is periodically
patterned to allow optical access from the far field. Owing to
this single-sided geometry, all spectroscopic information can
be obtained from reflectivity measurements since there is no
transmitted beam. Furthermore, the efficiency of the nonlin-
ear process can be optimized by independently tailoring the
different decay channels [42,43] to reach the so-called critical
coupling regime with external radiation, where radiative and
nonradiative losses are equal and on resonance all incident
light is funneled into the cavity [44].

Under this condition, the energy density stored in the cavity
is simply related to the incident power Pinc by εst γpol = Pinc

where γpol is the polariton decay rate. In the strong-coupling
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regime, the energy of a polariton mode is shared by its light
and matter component in proportion to the Hopfield coeffi-
cients, so the excitation density in each well and per electron
is given by

σel�E = |uX |2 εst

Nw

= Pinc |uX |2
Nwγpol

, (13)

where Nw is the number of QWs coupled to the cavity mode
and |uX |2 is Hopfield coefficient quantifying the matter com-
ponent of the polariton.

A. Nonlinearity from the depolarization shift

Deep in the strong coupling, the frequency shift of the
polariton mode is |uX |2 times the one of the matter excitation
[40]. This result can be combined with the analytical formula
Eq. (7) for the ISB frequency shift to obtain an explicit expres-
sion for the power-dependent frequency shift of the polariton:

�(h̄ωres) = −a1
e2LQW

ε

|uX |4
NwγpolEo

21

Pinc . (14)

From this formula, assuming for simplicity |uX |2 = 1/2 and
a typical number Nw = 10 of wells, we can estimate that an
intensity around 1 MW/cm2 is required to obtain a redshift
of the polariton mode comparable to the polariton linewidth
h̄γpol = 5 meV. Quite interestingly, note that this formula does
not involve the electron density. This is, of course, valid as
long as one remains in the strong coupling regime [37]. In
contrast, as we have pointed out in Sec. IV C, the incoherent
saturation effect at a given value of the nonlinear frequency
shift is smaller for a large electron density.

Based on the scaling laws discussed above, and plug-
ging in the typical experimental observation that the quantity
h̄γpol/Eo

21 (that is, the Q factor) is typically constant across
the different frequency windows, one obtains that the re-
quired power to achieve a redshift comparable to h̄γpol scales
as α7/2 and thus quickly decreases as one moves to longer
wavelengths. As a concrete example, reducing the resonance
frequency by a factor of 10 from 110 meV to 11 meV (corre-
sponding to ∼2.7 THz) reduces the Pinc by a remarkable factor
∼3000 toward the few 100 W/cm2 range. Further reductions
could come from a reduction of the number Nw of wells
(keeping a fixed overlap factor), an improvement of the cavity
Q factor or a clever design of the cavity so to spatially con-
centrate the light intensity in subwavelength volumes [45,46].

B. Nonlinearity from the saturation of polariton splitting

When dealing with microcavity configurations, it is im-
portant to remember that an additional frequency shift of the
polariton modes arises from the nonlinear saturation of the
dipole moment, which induces a corresponding reduction of
the polariton Rabi splitting [40].

Within our theory, this effect is captured by the non-
linear dependence of the dipole moment in Eq. (9), which
gives a corresponding variation of the oscillator strength, f �
f0 (1 − b1 �E/Eo

21). In terms of the polariton splitting �R,

this results in

�R = �o
R + ��R � �o

R

(
1 − b1

�E

Eo
21

)
, (15)

where the linear-regime Rabi frequency is given by

�o
R =

(
2πe2Nwσelη

ε m∗Lcav

)1/2

. (16)

Here, η is an adimensional parameter of geometric origin,
typically of order one, while Lcav is the thickness of the cavity.

It is interesting to quantitatively compare the magnitude of
the nonlinear shift due to the ISB frequency shift Eq. (7) to
the one coming from this reduction of �R. To this purpose,
we can consider the ratio

��R

�(h̄ωres)
= b1

a1

�R

Eo
21

εEo
21

e2σelLQW
. (17)

Plugging in the specific parameters for the mid-IR QW con-
sidered above with an electron density σel = 3 × 1012 cm−2, a
QW density Nw/Lcav = 0.02 nm−1 and η = 1/2, one obtains
�o

R � 16 meV. Inserting this value into Eq. (17), one finds that
the ratio of the two nonlinearities is in the order of unity.
Interestingly, the last factor on the right-hand side (RHS)
of Eq. (17) is constant under our usual scaling while, for
a given overlap factor Nw/Lcav, the ratio �o

R/Eo
21 displays a

slow variation as α−1/4. As a result, one cannot expect major
changes in this ratio when moving from mid-IR toward the
THz range. This confirms that our arguments on the scaling of
the required incident power with operation wavelength remain
valid when we include this saturation nonlinearity.

Note that a very different behavior is expected for the two
polariton branches. For the upper polariton, both mechanisms
give rise to a redshift and cooperate to reinforce the nonlinear
effect. For the lower polariton, instead they push in opposite
directions and, depending on the actual value of the Hopfield
coefficients, they may cancel out, suppressing the final value
of the effective nonlinearity. These arguments suggest that in
the ISB case the upper polariton branch is more favorable
for nonlinear optics experiments. This conclusion [47] is to
be contrasted with the exciton-polariton case where the fre-
quency shift of the exciton under the effect of the repulsive
binary interactions is in the blue direction, making the lower
polariton a more favorable choice for nonlinear optics experi-
ments [40].

VI. EFFECTIVE QUANTUM HAMILTONIAN

Even though the theory presented in this paper is based
on the excitation of the electronic system by classical light,
our results are a good starting point to attempt a phenomeno-
logical quantum theory of optical nonlinearities of electrons
in QWs. Such a development is of utmost importance if one
is to extend quantum optics concepts, tools, and applica-
tions originally developed for visible or near-IR light [48]
to devices operating in longer wavelength ranges. Building
a complete theory of quantum nonlinearities is a task that
goes way beyond this paper, so we will restrict here to some
semiquantitative reasonings that offer an intuitive feeling of
the strength of the effect.
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Indicating with �̂X(r) the (approximately bosonic) field
operator describing the bright ISB excitation mode of the elec-
trons in the QW [20,49], we can write a model Hamiltonian in
the form

H = h̄ωlin

∫
d2r �̂

†
X(r) �̂X(r)

+ h̄ωnl

2

∫
d2r �̂

†
X(r) �̂

†
X(r) �̂X(r) �̂X(r)

− e d0

∫
d2r E (r, t )�̂†

X(r)

(
1 − �̂

†
X(r) �̂X(r)

nsat

)

−H.c. (18)

where h̄ωlin = Eo
21 + a0 e2LQW/ε is the linear oscilla-

tion frequency and the binary interaction energy h̄ωnl =
−a1 e2LQW/ε accounts for the redshift of the resonance. Note
that this effective interaction term has an opposite sign com-
pared to the exciton-polariton case [40].

The term describing the coupling to the applied electric
field E (r, t ) has the physical meaning of an effective transition
dipole. At the linear regime, its value is

d0 = b0LQW

[
1 − s1

e2σelLQW

εEo
21

]√
σel, (19)

while at higher densities it displays a saturation behavior
of saturation density nsat = σel/b1. As usual, the operator
�̂

†
X(r) �̂X(r) indicates the in-plane density of ISB excitation

quanta. In the language of Ref. [50], our quantum Hamiltonian
Eq. (18) refers to the bosonic regime of a relatively large
number of electrons and relatively weak excitation.

As a simplest example of application of this model
Hamiltonian, it is interesting to estimate the strength of the
single-excitation nonlinearity in a subwavelength resonator of
lateral area Scav, where the electromagnetic field is confined
in all three dimensions [51–54]. As a figure of merit, we will
consider the frequency shift �1 of the polariton resonance
when a single quantum of excitation is injected into the de-
vice. When �1 exceeds the linewidth γpol, the presence of a
single quantum of excitation is able to push the oscillation
frequency away from resonance with the incident light and, in
this way, prevent the injection of a second quantum of energy
into the device. This phenomenon goes under the name of
photon/polariton blockade and is experimentally visible as
strong nonclassical features in the transmitted and reflected
light such as antibunching [26,40,55].

To estimate �1, we first note that the energy of a single
quantum of excitation will distribute among the Nel = σelScav

electrons present in the resonator, giving an excitation density
�E/Eo

21 = 1/Nel. As a result:

�1

γpol
� a1e2LQWσel

ε Eo
21

Eo
21

h̄γpol

1

Nel
. (20)

For the mid-IR configuration considered in this paper, the first
fraction on the RHS is of order 0.4, so blockade �1/γpol � 1
requires the number of electrons Nel to be a sizable fac-
tor below the Q factor of the cavity, indicated here by the
Eo

21/(h̄γpol ) factor. Assuming that electrons are uniformly

distributed in the cavity area with a given two-dimensional
density, this imposes an upper bound on the cavity area.

As a quantitative benchmark, for the electron density value
σel = 3 × 1012 cm−2 used so far, each electron effectively
occupies a region of ∼30 nm2. Using subwavelength nanoan-
tennas and comparable electron densities, it was possible to
achieve a lateral confinement of the field strong enough to
observe strong light-matter coupling in the midinfrared with a
few 103 electrons confined in an area of a characteristic linear
size of 100 nm [54].

Based on our scaling arguments for the different coeffi-
cients in Eq. (20), it is immediate to see that the criterion based
on the Q factor and the number Nel of electrons directly ex-
tends to longer wavelength regimes and leads to comparable if
not more promising predictions for THz radiation. The larger
dipole moment of the transition in fact reduces the required
electronic density for strong coupling and thus weakens the
constraint on the maximum physical size of the patch cavity
to observe blockade. As a result, ultrastrong light-matter cou-
pling has been observed using a cyclotron transition of less
than 100 electrons coupled to a sub-THz nanogap hybrid LC
microcavities [52] and using a 3 THz ISB transition of a few
1000 electrons coupled to a LC resonator [53,56].

Comparing these values with the Q factors in the 20 range
that are presently available and considering the perspectives
of further improvement sketched in the original works, these
results are extremely promising in view of reaching polari-
ton blockade in the mid-IR and THz domains in the next
future. Given the present state of technology, it is likely that
a main experimental hurdle along this path will consist of the
development of efficient single photon detectors to measure
quantum correlations for such long-wavelength radiation.

VII. CONCLUSIONS AND PERSPECTIVES

To summarize, in this paper we have developed a general
theory of the coherent optical nonlinearities associated to ISB
transitions in semiconductor QWs including the quantum me-
chanical motion of electrons and their Coulomb interactions.
As the most relevant observable quantities, simple expressions
for the intensity dependence of the oscillation frequency and
the dipole moment of the ISB transition are derived. Interest-
ing scaling laws in the operation wavelength are highlighted
and crucial differences from competing processes such as in-
coherent saturation effects are pointed out. The consequences
of these optical nonlinearities on ISB polaritons in micro-
cavity geometries are investigated and quantitative estimates
across different ranges of wavelengths from the mid-IR to the
THz are put forward. These predictions appear promising in
view of the observation of phenomena such as parametric gain
and Bose-Einstein condensation of ISB polaritons. Finally, as
a more speculative direction, we have explored the potential of
ISB polaritons as a platform for exploting blockade effects to
generate antibunched light in longer wavelength ranges where
quantum optics is still much less developed.

The theoretical framework discussed in this paper will be
of great use in future work to design structures with more
complex potentials to maximize the strength of the nonlinear
response for different processes such as intensity-dependent
frequency shifts, harmonic generation, and coherent
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wave-mixing processes. On the longer run, our results
will be a useful starting point to build a fully quantum optical
theory to guide experiments aiming at extending, e.g., photon
blockade phenomena and single-photon emission to unique
wavelength regimes.
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APPENDIX A: IMAGINARY-TIME EVOLUTION

In this Appendix, we briefly review the main principles un-
derlying the imaginary-time evolution method used to find the
wave function ψg(z) and the energy Eg of the lowest-energy
eigenstate of the time-independent SP Eq. (2).

The partial differential equation encoding the imaginary-
time evolution is obtained from the real-time evolution Eq. (1)
by rotating the time variable t → −iβ in the complex plane,

∂ψ (z, β )

∂β
= − 1

h̄

{
− h̄2

2m∗
∂2ψ

∂z2
+ VQW(z)ψ (z)

+ 2π e2

ε

∫
dz′ |z − z′|

[
σimp(z′)

− σel
|ψ (z′)|2
||ψ ||2

]
ψ (z)

}
. (A1)

The factor involving the norm of the wave function

||ψ ||2 =
∫

dz |ψ (z)|2 (A2)

is required at the denominator of the interaction term since
the imaginary-time evolution (in contrast to the real-time one)
does not conserve the norm.

At long times β → ∞, the imaginary-time evolution typi-
cally converges to an exponentially decreasing wave function

ψ (z, β ) � ψ∞(z) e−βE∞ (A3)

from which one extracts the ground-state wave function
ψg(z) = ψ∞(z)/||ψ∞|| and the ground-state energy Eg = E∞.
Inserting the ansatz Eq. (A3) into Eq. (1), one indeed recovers
the time-independent SP equation of the form Eq. (2).

In a practical calculation, we can choose a generic wave
function as the initial state ψ (z, β = 0). We then have to nu-
merically evolve ψ (z, β ) in β according to Eq. (A1) until we
reach convergence. This is determined by looking at the con-
vergence of the SP energy of ψ (z, β ) to a constant value. The
imaginary-time evolution (as well as the following real-time
one) is carried out using a split-step method: The evolution at
each time step is Trotter split into the noncommuting kinetic

and potential energy parts and each of them is sequentially
implemented in the space in which it is diagonal, namely, k
space for the kinetic energy and real space for the potential
and interaction energy terms. At each time step, interconver-
sion between the k and the real space and back is performed
by fast Fourier transform.

The imaginary-time method is most transparent in the non-
interacting limit, where the nonlinear term in the evolution
equation is negligible. In this case, we can decompose the
initial wave function

ψ (z, β = 0) =
∑

j

a j (β = 0) ψ j (z) (A4)

on the orthonormal basis of eigenfunctions ψo
j=1,2,...(z) of the

Schrödinger problem in the bare QW potential, with energy
Eo

j=1,2,.... The random initial condition reflects into a ran-
dom choice of the initial value a j (β = 0) of the expansion
coefficients. By linearity, the imaginary-time evolution acts
independently on each of them, a j (β ) = a j (0) e−βEo

j . At late
times β → ∞, only the lowest-energy eigenvector survives
(the higher ones j � 1 are exponentially suppressed at least
as e−β(Eo

2 −Eo
1 )) and ψ (z, β ) converges to the lowest-energy

eigenvector,

ψ (z, β ) � a1e−βEo
1 ψo

1 (z), (A5)

recovering the limiting form Eq. (A3). From this discussion,
it is immediate to see that the correct ground state is found
independently on the choice of the initial wave function pro-
vided a1(β = 0) 
= 0, a condition which is satisfied by any
randomly chosen initial wave function. This independence
from the initial condition, mathematically proven in the non-
interacting case, has been numerically verified to also hold in
the interacting case by repeating the calculation for different
choices of the initial wave function.

APPENDIX B: ANALYTICAL STUDY
OF THE OSCILLATION FREQUENCY IN THE LIMIT

OF LOW ELECTRON DENSITY

As a further verification of the numerical calculations and a
quick guiding tool for the design of unique structures, it is in-
teresting to look at the linearized Eq. (3) in the small electron
density limit where an analytical treatment is possible. The
discussion in this Appendix is inspired from the Bogoliubov
theory of the weakly interacting Bose gas [31].

We indicate with ψo
1,2(z) the two lowest states of the QW

for negligible electron density. In the limit of a weak excita-
tion, we can expand the linearized dynamics in the basis of
these two states only,

ψ (z, t ) = e−iEo
1 t/h̄ × [

ψo
1 (z) + α(t ) ψo

2 (z) u2

+ α∗(t ) ψo
2 (z) v2

]
, (B1)

where α(t ) is the excitation amplitude and [u2, v2]T is the
projection of the linearized eigenmode [u(z), v(z)]T on the
excited ψ2 state to which we are restricting our attention, with
the usual normalization |u2|2 − |v2|2 = 1.

Plugging the ansatz Eq. (B1) into the linearized SP dynam-
ics Eq. (3) and imposing a harmonic evolution of the exci-
tation amplitude, α(t ) = ᾱ e−iωrest , we get to the eigenvalue
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equation

L
(

u2

v2

)
= h̄ωres

(
u2

v2

)
, (B2)

with

L =
(

Eo
21 + �H + �x �x

−�x −Eo
21 − �H − �x

)
. (B3)

Here, Eo
21 = Eo

2 − Eo
1 is the energy difference between bare

electronic levels. The terms accounting for the Coulomb in-
teractions are proportional to the dimensional η̄ = 2πe2σel/ε

coefficient quantifying the effective strength of Coulomb in-
teractions. In detail,

�H = V21 − V11 (B4)

is the static Hartree shift of the transition under the effect
of the Coulomb interactions, expressed in terms of the static
Coulomb shift of the ψ1,2 states in the charge distribution
determined by the ground-state electrons and the impurities,

V11 = −η̄

∫
dz

∫
dz′ |z − z′|[|ψo

1 (z)|2 − σimp

σel
(z)

] |ψo
1 (z′)|2,

(B5)

V21 = −η̄

∫
dz

∫
dz′ |z − z′|[|ψo

1 (z)|2 − σimp

σel
(z)

] |ψo
2 (z′)|2,

(B6)

and �x accounts for the dynamical distortion of the electronic
distribution induced by the excitation:

�x = −η̄

∫
dz

∫
dz′ |z − z′| ψo

1 (z) ψo
2 (z) ψo

1 (z′) ψo
2 (z′) .

(B7)
For low electron densities, all these quantities are small com-
pared to the bare transition energy Eo

21, so the resonance
energy h̄Eres can be analytically calculated within perturbation
theory as

h̄ωres � Eo
21 + �H + �x − �2

x

2Eo
21

. (B8)

These quantities can be easily computed in the idealized
case of an infinite well of thickness LQW for which the wave
functions and the energies of the two lowest states and their

TABLE I. Table of the Coulomb interaction integrals [Eqs. (B5)–
(B7)] and of the energy shifts Eqs. (B4) and (B8) for an infinite well
of thickness LQW = 12.7 nm for which the transition energy �eg =
109.6 meV is comparable to the case considered in the main text.
The different columns refer to different locations of the impurities,
namely, outside the well [as in the left panel of Fig. 1(b)], inside the
well [as in the right panel of Fig. 1(b)], at the center of the well.
The energy shifts in the last two rows are evaluated for an electronic
density σel = 3 × 1012 cm−2 corresponding to the rightmost points in
Fig. 2(b).

Outside ±10 nm Inside ±2 nm Center

V11/η̄ 0.79 −0.011 −0.06
V21/η̄ 0.73 −0.013 −0.02
�H/η̄ −0.06 −0.002 0.04
�x/η̄ 0.11 0.11 0.11
h̄ωres − E21 9.5 meV 26.6 meV 37.7 meV
�H −17.2 meV −0.55 meV 10.3 meV

energies have the following analytical forms:

ψo
1 (z) =

√
2

LQW
cos

(
πz

LQW

)
, Eo

1 = h̄2

2m∗

(
π

L QW

)2

, (B9)

ψo
2 (z) =

√
2

LQW
sin

(
2πz

LQW

)
, Eo

2 = h̄2

2m∗

(
2π

LQW

)2

. (B10)

In particular, the value of the integrals in Eqs. (B5)–(B7) can
be straightforwardly estimated for different locations of the
impurities as summarized in the upper part of Table I.

Inserting these values in the matrix Eq. (B3), one obtains
the prediction for the shift of the ISB transition listed in the
bottom part of Table I. In spite of the severe approximations
done, this prediction is in quite good quantitative agree-
ment with the full numerical calculation shown in Fig. 3(b).
Note how the resonance shift strongly departs from the static
Hartree prediction �H based on the static Coulomb energy
shift of single-particle orbitals.

It is interesting to remember that this crucial difference
between the single-particle energies and the collective exci-
tation frequencies also occurs in dilute Bose gas with local
interactions [31,32]. For instance, in a spatially homogeneous
geometry, the single-particle states have the quadratic disper-
sion of the kinetic energy, while the Bogoliubov dispersion of
the collective excitation modes obtained from the linearization
of the GPE starts at low wave vector with a sonic dispersion
dominated by the interaction effects and only later recovers
the quadratic form.

[1] E. R. Weber, R. K. Willardson, H. Liu, and F. Capasso, In-
tersubband Transitions in Quantum Wells: Physics and Device
Applications (Academic Press, San Diego, 1999).

[2] J. Faist, Quantum Cascade Lasers (Oxford University Press,
Oxford, 2013).

[3] S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C.
Sirtori, S. Khanna, E. Linfield, and G. Davies, Nat. Photonics 5,
306 (2011).

[4] M. Bagheri, C. Frez, L. Sterczewski, I. Gruidin, M. Fradet,
I. Vurgaftman, C. Canedy, W. Bewley, C. Merritt, C. S. Kim
et al., Sci. Rep. 8, 3322 (2018).

[5] A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, Nature
(London) 492, 229 (2012).

[6] J. Hillbrand, D. Auth, M. Piccardo, N. Opačak, E. Gornik, G.
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