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Research on surface waves supported by metals at THz frequencies is experiencing a tremendous growth due
to their potential for imaging, biological sensing and high-speed electronic circuits. Harnessing their
properties is, however, challenging because these waves are typically poorly confined and weakly bound to
the metal surface. Many design strategies have been introduced to overcome these limitations and achieve
increased modal confinement, including patterned surfaces, coated waveguides and a variety of
sub-wavelength geometries. Here we provide evidence, using a combination of numerical simulations and
time-resolved experiments, that shrinking the transverse size of a generic metallic structure always leads to
solutions with extreme field confinement. The existence of such a general behavior offers a new perspective
on energy confinement and should benefit future developments in THz science and technology.

he manipulation of THz surface modes, known as Sommerfeld waves for cylindrical/wire waveguides"* and

Zenneck waves for planar surfaces® has been a long-standing challenge due to the two conflicting roles

played by metals in these systems. On one hand, these modes exist because metals have a good conductivity:
they result from the coupling between electromagnetic waves and moving charges at the surface of the conductor*.
On the other hand, this interaction is typically weak because the same charges have a screening effect that severely
limits the penetration of the electromagnetic fields inside the metal. Thus, the modes are poorly bound; for
smooth metallic waveguides, electric fields associated with THz surface waves typically penetrate ~50-100 nm
into the metal but extend tens of wavelengths (i.e. hundreds of microns) into the dielectric above. In fact, this
problem is not specific to the THz regime and it is even more acute at gigahertz and radio frequencies.

In 1950 Goubau predicted that the adverse effects of the metal conductivity on THz and other low frequency
waves could be mitigated by either structuring the surface along which the modes propagate or by coating the
metal with a dielectric layer of finite thickness®. He demonstrated that in both cases, the modified surface could be
seen as having a much lower effective conductivity than the metal alone, leading to well-confined solutions even in
the limit of a perfectly conducting core. Since this pioneering work, several studies have confirmed that the modes
supported by metal waveguides with subwavelength corrugations, known as “spoof plasmons” in the modern
literature, are more tightly bound than conventional Zenneck or Sommerfeld waves®''. Likewise, many authors
have demonstrated that improved field confinement could be obtained by coating metal surfaces with a thin
dielectric film*'*""*. In recent years, the community realized that other strategies could be used to create highly
sub-wavelength modes, for example by working with micrometer-size metal tip apexes'®'’, metallic nanoslits'®"®,
small diameter single wires***, parallel-plate waveguides with micrometer-size width and separation®**, and
planar Goubau lines®’.

Thus, it appears that a variety of phenomena and approaches are readily at hand to confine THz surface waves
into highly sub-wavelength volumes. In this article we show that the existence of strongly confined modes in all
these aforementioned geometries has in fact the same origin, independent from the physical mechanisms that
bind the waves to the metal surface: the reduction of the waveguide size in at least one direction transverse to the
propagation. To see this phenomenon at work, we model and fabricate structures that support THz surface modes
through very different physical principles: a single Au stripe embedded in a homogeneous medium, a perfectly
conducting stripe supported by a dielectric layer with a finite thickness, and a planar Goubau line.

Results
Modes supported by a Au stripe in a symmetric environment. We examine the guiding properties of a
rectangular Au stripe embedded in a homogeneous matrix with a dielectric index n = 1.46 (Fig. la). This
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Figure 1 | Simulation of the modes supported by a Au stripe in a symmetric environment. (a) Schematic of the Au waveguide embedded in a

homogeneous dielectric environment. (b) Cross-section map representing the power carried by the mode propagating along a Au stripe with a width
w = 2 um and a thickness t = 20 nm at 1 THz. The calculations have been performed at 1 THz but no other mode has been found by sweeping the
frequency from 0.5 THz to 20 THz or by increasing the lateral dimensions of the stripe up to a few hundreds of microns. (c) Ey field distribution for the
same mode. The arrows represent the total field E. (d) Real (top) and imaginary parts (bottom) of the effective index neff as a function of the stripe
thickness t. The different curves correspond to stripes with different widths w, as indicated on the graph. The smallest thickness used in the simulations is
t = 0.02 pm. Although it is possible to simulate thinner stripes as well, we note that real Au films become extremely rough for t < 0.02 pm*.

(e) Cross-section of the power carried by the mode for two waveguides of different sizes. Blue curve: large stripe with a width w = 30 um and a thickness
t =10 um; Red curve: small stripe with w = 2 pm and t = 20 nm. Here the power has been evaluated along the vertical symmetry plane of the structure
(i.e. the y axis). (f) Dispersion relation of the modes supported by a Au stripe with a width w = 10 um and a thickness t = 200 nm, corresponding to
typical dimensions of THz metallic structures reported in literature as Goubau lines. Only the first lowest order modes have been represented and labeled
according to the nomenclature of Ref.28. Blue curve: short-range sa,” mode, red curve: short-range aa,’ mode, orange curve: long-range as;,” mode and
yellow curve: long-range ss,° mode. The top inset represents a close-up of Re(n.g) for the sa,” mode in the THz range while the bottom inset shows the
permittivity of Au across the electromagnetic spectrum (data taken from Ref. 33). Note that this permittivity provides an accurate description of Au from

the THz to the mid-infrared range but that it slightly underestimates the losses at higher frequencies compared to other experimental datasets®>*.

geometry admits solutions that result from the sole coupling between
electromagnetic fields and the free electrons at the metal surface and
we investigate its properties with a finite element package (cf
Supplementary Methods).

We first consider a Au stripe with a width w = 2 ym and a
thickness t = 20 nm. Figs. 1b and 1c show the power distribution,
the E, field pattern, and a plot of the vectors representing the electric
field of the only mode found by our solver at 1 THz. In the remaining
of this work, we use E, to identify the field symmetries of the solu-
tions and note that the symmetries of the other components can be
deduced from this information through Maxwell’s equations. The
mode of Figs. 1b—c is characterized by a strong concentration of the
electromagnetic energy around the corners, which act as lightning
rods; in addition, its field component E, is antisymmetric with
respect to the x axis and symmetric with respect to the y axis. In fact,
this mode can be seen as a sub-wavelength variant of a Sommerfeld

wave: both solutions are bound to a single metallic line in a
homogeneous medium and both are characterized by an axial field
distribution.

To get a deeper insight, we examined how the mode properties
depend on the dimensions and aspect ratio of the rectangular wave-
guide. Fig. 1d summarizes the results by plotting the dispersion of the
mode as a function of the metal thickness t at 1 THz. Several curves
are shown corresponding to waveguides of different widths w. In all
cases, the real part of the effective index n.g follows three successive
trends as ¢ decreases: a continuous rise until ¢ reaches approximately
0.3 pm, a slight sag, and finally a sharp upturn for thicknesses smaller
than approximately 0.1 um. In this latter regime, the slope of the
curves becomes markedly steeper. This behavior is all the more
marked than the width of the waveguide is also small. Further calcu-
lations, not shown here, indicate that the intermediate regime
(0.3 um >t > 0.1 pum) is caused by the conductivity of the Au stripe
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that temporary counters the dispersive effects induced by t. However,
the geometrical parameters always end up overcoming the influence
of the conductivity since all the curves of Fig. 1d diverge for metal
thicknesses smaller than 0.1 pm—a value close to the skin depth of
Au at 1 THz (~73 nm). The imaginary part of n., has a smoother
evolution but also diverges for vanishing Au thicknesses. These dis-
persion curves consistently demonstrate that the mode evolves into a
highly confined solution as the transverse dimensions of the metal
waveguide tend to zero. As always with metallic structures, this field
confinement leads to increased absorption losses.

Fig. le shows a cross-section of the power carried by the mode
along the y axis for a relatively large metal stripe (width w = 30 pm,
thickness t = 10 um) and one with highly sub-wavelength dimen-
sions (w = 2 um, t = 20 nm). One can see that the confinement
dramatically increases as the waveguide cross-section is reduced. In
particular, the distance at which the power decreases to 1/2e of its
initial value reaches A/93 for the smallest stripe, where A = X,/1.46 ~
200 pm is the wavelength of light in the dielectric medium, further
illustrating that reducing the waveguide transverse size down to sub-
wavelength scales leads to extreme field confinement.

Before elaborating further on this behavior, it is useful to note that
a short-range surface plasmon characterized by the same field sym-
metries and by a similar increase of n.g with shrinking lateral dimen-
sions has been predicted by Berini in the near-infrared and visible
part of the spectrum®*. In the optical regime, the influence of the
waveguide dimensions on Re(n.g) and Im(n.g) is explained by con-
sidering that the modes result from the coupling between the fields
bound to the four walls of the metal waveguide. In addition, the
presence of sharp corners further increases the confinement through
lightning rod effects.

The THz surface mode naturally evolves towards the optical
short-range plasmon of Ref.28, as can be verified by plotting their
dispersion relation (Fig. 1f). We can therefore categorize our THz
surface wave using Berini’s nomenclature, i.e. we identify this solu-
tion as the sa,’ mode. Importantly, it should be noted that many
others surface plasmon modes exist at optical frequencies®®. The
dispersion relation of some of these solutions is also represented
on Fig. 1f. One can see that as the frequency decreases, the real
and imaginary parts of their refractive index decrease before experi-
encing a cutoff in the infrared. The sa;,” mode is the only solution
that survives in the THz range. Its effective index eventually raises
again as the frequency reaches the THz regime (this increase can be
better seen in the insert of Fig. 1f for the real part of the permittivity).
Such unusual dispersion has already been observed some time ago
for Sommerfeld waves propagating along cylindrical metal wave-
guides and has been attributed to conductivity effects®. This point
can be further clarified by also taking into account the size effects.
For a given geometry, such as the stripe of Fig. 1f, reducing the
operation frequency has two consequences. First, it increases the real
and imaginary part of the permittivity, resulting in a better conduc-
tivity that pushes the electromagnetic fields away from the metal
surface. Second, the stripe becomes comparatively smaller with
respect to the operation wavelength, and we know that a smaller
cross-section reinforces the field confinement around the structure.
Thus, the conductivity and the size effects have two competing roles.
For the most part of the dispersion relation, from the visible to the
far-infrared, the conductivity has a greater weight than the size
effects because it increases by several orders of magnitude (inset of
Fig. 1f). Consequently the modes become less confined which leads
to a decrease of the real and imaginary part of the permittivity. In the
THz range, however, the variations of the conductivity level off and
the mode properties become dominated by the size effects. Conse-
quently, reducing the transverse size of the waveguides down to sub-
wavelength dimensions is a powerful tool to achieve high modal
confinement. This conclusion can be extended to other waveguide
geometries such as cylindrical wires.

Modes supported by a perfectly conducting stripe on a thin dielec-
tric layer. We now show that the effects evidenced in Fig. 1 do not
depend on the physical mechanisms that bind the electromagnetic
energy to the waveguide. In the first section, we examined surface
modes that solely result from the coupling between an electro-
magnetic field and the moving charges of the conducting stripe.
However, other families of solutions can also be obtained by either
coating the waveguide with a dielectric layer or by structuring the
metal surface at the sub-wavelength scale. Both approaches amount
at lowering the effective conductivity of the metal surface and
therefore they are even valid in the limit of perfectly conducting
waveguides. As an example, we consider here a perfect metal stripe
on a thin dielectric layer (ng;y = 1.46) surrounded by air (Fig. 2a).
Although the geometry is reminiscent of the structure studied in
section 1, the field cannot penetrate in (and thus be bound to) the
metal, which changes the nature of the modes in a fundamental way.
Here, any bound solution solely results from the presence of the
dielectric layer®.

We first examine a perfect conductor stripe with a width w =
2 pm and a thickness t = 20 nm, i.e. with the same subwavelength
dimensions investigated in section 1. The thickness of the dielectric
layer is set to 10 pm (/30 at 1 THz). Figs. 2b and 2c show the power
distribution, the E, field pattern, and a plot of the vectors represent-
ing the electric field of the only mode found by our solver at 1 THz.
One can see that this solution is reminiscent of the sa,’ mode of the
Ausstripe studied in section 1. First, the mode energy is localized near
the four corners of the structure, revealing lightning rod effects.
Second, the field component E, has the same field parity as the say
mode and crucially it features an axial field distribution. The sim-
ilarities between this mode and the sa,,” mode are all the more striking
that the waveguides supporting these solutions operate on very dif-
ferent principles. Here the mode has all the properties of sub-
wavelength Goubau waves; i.e. it is bound to a conductor coated with
a thin dielectric layer and characterized by an axial field distribution®.
The importance of the dielectric layer for binding the mode can be
seen by the evanescent tail of the energy in the air region beneath the
dielectric layer.

The evolution of this bound mode as a function of the metal
thickness ¢ for different widths is shown on Fig. 2d at 1 THz. In all
cases, the effective index n.g significantly increases as t decreases and
the slope of the dispersion curves increases as the waveguide width is
smaller, just as in the case of the sa,’ mode investigated in section 1.
Note however that n. does not diverge as the waveguide transverse
dimensions tend to zero. Rather, the effective index approaches finite
values, which reflect the fraction of the mode energy localized either
in the dielectric layer or in the air. These differences are a direct
consequence of the fact that the stripe has an infinite conductivity
contrary to the previous case.

Fig. 2e shows a cross-section of the power carried by the mode
along the y axis above the stripe (in the air) for stripes with two
different sizes. The mode confinement strongly increases as the
transverse dimensions of the stripe are reduced to highly sub-wave-
length dimensions: for the smallest stripe (w = 2 pum, ¢ = 20 nm) the
lateral mode extension is reduced down to 2.2 pm, or A/136.

We calculated the dispersion relation of the modes supported by a
10 pum-width and 200 nm-thick perfect conducting stripe (Fig. 2f).
To keep binding effects constant at all operation frequencies, we set
the dielectric layer thickness to A/2ng4;.. The curves bear many sim-
ilarities with those computed for the Au stripe of section 1 (Fig. 1f). In
particular, the structure supports a variety of modes from the optical
to the far-infrared range, and all these solutions are successively
going into cutoff as the frequency decreases. The only exception to
this general trend is the trajectory of the THz bound mode (red
curve). In contrast to the other solutions, the effective index of this
mode increases with decreasing frequencies, and as the frequency
reaches the THz regime the slope of the curves becomes steeper.
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Figure 2 | Simulation of the modes supported by a perfectly conducting stripe on a thin dielectric layer. (a) Schematic of a rectangular perfect metal
stripe on a thin dielectric layer (ng; = 1.46) surrounded by air. The dielectric layer is infinitely wide and its thickness is set in the subwavelength range
(<M 2nge). (b) Cross-section map representing the power carried by the mode propagating along a perfect conductor stripe with a width

w =2 pmand a thicknesst = 20 nm at 1 THz. The thickness of the dielectric layeris set to 10 um (A/30 at 1 THz) since the bound mode only exists in the
limit of a dielectric layer thickness that does not exceed the critical value of A/2ng;e. No other mode has been found by sweeping the frequency from
0.5 THz to 5 THz. (c) Ey field distribution for the same mode. The arrows represent the total field E. (d) Effective index n.g as a function of the metal
thickness ¢ for different widths of the perfect conducting stripes. (e) Cross-section of the power carried by the mode, in the air, for a large stripe
(width w = 30 pum, thickness t = 10 pm, blue curve) and for a small stripe (w = 2 pm, t = 20 nm, red curve). The power has been evaluated along the
vertical symmetry plane of the structure (i.e. the y axis) in the upper plan. (f) Dispersion relation of the modes supported by a 10 pm-width and

200 nm-thick perfect conducting stripe. The red curve shows the evolution of the mode examined in figs. 2a—e; it is the only solution that is not in cutoff in

the THz range. To keep binding effects constant at all operation frequencies, we set the dielectric layer thickness to A/2nge;.

Thus, the mechanisms that allowed the sa,” mode of the Au stripe
to survive at low frequencies (cf. Fig. 1f) are also at work here: the
THz bound mode studied in this section does not have any cutoff
because of the reinforcement of the electromagnetic field interactions
across the waveguide cross-section and the lightning rod effects.
Since the dimensions of the structure become smaller with respect
to the wavelength as the frequency decreases, this behavior is another
evidence that shrinking the transverse size of metallic waveguides is a
powerful strategy to achieve high electric field confinement at THz
frequencies. Note that the size effects evidenced in this figure are not
counterbalanced by the dispersive screening effects contrary to the
dispersion relations that we obtained for a Au stripe embedded in a
homogeneous medium.

Modes supported by a planar Goubau line. We now provide an
experimental validation of the key role played by the transverse size
of the waveguides by studying a real planar Goubau line made of a
finite conductivity metal stripe on a thin dielectric layer (Kapton®-*?).
This structure supports hybrid modes that can be seen as a com-
bination of the as,’ mode studied in section 1 and the THz bound
mode studied in section 2. The dispersion relation of the modes pro-
pagating on planar Goubau lines is measured using a guided wave
THz time domain spectroscopy experiment (see Supplementary

Methods). Figure 3b shows the time-domain electric field wave-
forms measured at the entrance of the line, after 500 um and
1 mm of propagation, for two different widths (200 pm and
30 um, see Supplementary Methods). After 1 mm of propagation,
the peak of the detected THz waveform propagating on the large line
shows a time delay of 538 fs compared to the waveform propagating
on the narrow line. This tendency indicates that the phase velocity
and consequently the real part of the effective index of the Goubau
mode rise as the stripe width becomes smaller. Besides, the waveform
is distorted during the propagation, as can be seen with the appea-
rance of a negative peak after the main positive peak, explained by
Gibbs phenomenon in the time domain®.

From the Fourier transforms of the measured time-domain wave-
forms, the effective index of the Goubau modes can be extracted.
Figure 3c shows the real part of the effective index of the modes as a
function of the frequency for the two different widths and compares
these data with numerical simulations. Note that the simulations
assume a dispersionless dielectric layer. The good agreement
between the numerical and experimental data points validates this
approximation and indicates that the dispersive effects are domi-
nated by the metal conductivity and the size of the metal stripe
and of the dielectric slab. These results demonstrate that the reduc-
tion of the stripe width from 200 pmto 30 pm significantly increases
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Figure 3 | Measurements of the mode properties supported by a planar Goubau line. (a) Time-domain electric field waveforms at the entrance

of the planar Goubau line, after propagating 500 pm and 1 mm on planar Goubau lines with widths of 200 um and 30 pm. (b) Experimental
(squares) and simulated (lines) real part of the effective index of the modes propagating on planar Goubau lines of width 200 um (blue) and 30 pm (red)
as a function of the frequency. The error bars denote uncertainties in experimental measurement.

the real part of the effective index and thus improves the localization
of the electromagnetic energy around the metal surface. We can
also derive the group dispersion velocity from the measured wave-
forms, a critical characteristic of waveguides for THz pulse propaga-
tion. At 0.6 THz, the group velocity dispersion is 0.4 ps’’mm and
0.23 ps*/mm for stripe width of 200 pm and 30 pum respectively,
indicating a slight decrease of the group velocity as the width of
the stripe is reduced. The imaginary part of the effective index is
hardly accessible using our experimental set up sensitivity since its
does not exceed 0.013 as confirmed by the simulations.

Discussion

THz surface waves can exhibit extreme sub-wavelength confinement
(smaller than A/100) by simply shrinking the transverse dimensions
of the structure along which they propagate. This size effect must be
distinguished from the physics defining the nature of the mode (i.e.
Sommerfeld wave, Goubau wave, Spoof Plasmons...). For large wave-
guides, the mode properties are primarily governed by the mechan-
isms that bind the mode to the metal surface: the dispersion,
electromagnetic confinement and field symmetries strongly depends
on the metal conductivity, the presence of sharp corners, and any
factor that may change the effective parameters of the surface (dielec-
tric coating, metallic corrugations, surface roughness...). However,
for small waveguides, the size effects cannot be neglected anymore
and as the waveguide cross-section tends to the nanoscale, size effects
can be used as a simple yet formidable tool for high electric field
confinement at THz frequencies. It would be interesting to general-
ize this result into a unified theory. This is beyond the scope of this
paper and it will be the subject of a future publication. Under-
standing this universal behavior should significantly ease the design
of highly miniaturized THz components, and particularly when it
comes to optimizing the trade-off between field confinement and
absorption losses for a given application. More importantly, the fact
that simple geometries support surface modes with a field confine-
ment comparable to the wavelength of light blurs the boundaries
between THz science and nano-optics, opening up exciting new
avenues for near-field imaging, single molecule detection, and ultra-
fast nonlinear phenomena.

Methods

Simulation. We assume that the metal waveguide is infinitely long along the
propagation direction z so we expect solutions of the form E = Ey(x,y)exp(i.n.gkoz),
where E, is the electric field in the transverse xy plane, n.g is the complex effective
index and n.gko = neg2mv is the wavevector of the mode. Although this problem can
be formulated in two dimensions, it is well known that the rectangular geometry does
not admit analytical solutions. In this article we solve for the modes of the structure by
performing an eigenmode analysis with a finite element package (Comsol
multiphysics). Due to the very high permittivity of Au in the THz range (bottom inset

of Fig. 1f), a special care must be taken to mesh the computational domain properly.
In particular, the discretization must be smaller than the skin depth of Au in the
vicinity of the metal interface, requiring elements whose size is significantly smaller
than 100 nm, or ~2/1000, around the metal waveguide. The conducting properties of
Au are modeled by using a complex permittivity fitting the experimental values
compiled in Ref. 33, represented in the bottom inset of Fig. 1f. In the simulations
involving perfect conductors, we only included the walls of the stripe in the model
since the field cannot penetrate inside. In this case, there is no dissipation and the
effective index n. is real.

Measurements. The guided-wave time domain spectroscopy (THz-TDS) experiment
makes use of a coherent detection of the electric field, enabling the direct
determination of the dispersion relation of the propagating modes. In the
experimental setup, which is similar to that described in our earlier publication®, the
THz pulses are directly generated and detected on waveguides thus avoiding the usual
problem of the coupling efficiency existing in free space THz-TDS. The propagation
characteristics of the THz pulses are measured by moving an electro-optic detector
along the axis of the line and just above its center.

Devices. The planar Goubau lines are fabricated on a 58 pm-thick dielectric layer of
Kapton with refractive index of 1.85*"**. The rectangular cross-section of the single
conductor is made of Ti/Au (20/500 nm) and is 4-mm-long. Two distinct line widths
of 30 pmand 200 pm are defined, all other parameters being identical. The excitation
of the Goubau mode is ensured by a coplanar waveguide (central stripe width of
12.5 pm, ground planes widths of 400 pum, and slots size of 2 pm) connected to the
planar Goubau line using tapered sections that provide smooth impedance
transformation between the coplanar waveguide and the planar Goubau line.
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